Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Colloids Surf A Physicochem Eng Asp ; 656: 130393, 2023 Jan 05.
Article in English | MEDLINE | ID: covidwho-2245876

ABSTRACT

The consumption of famciclovir (FCV) has been increased dramatically since the outbreak of coronavirus in 2019, and the pollution and harm of FCV in waters are concerned. Here, by utilizing aryl halides on 2, 4, 6-tris(4-bromophenyl)- 1, 3, 5-triazine (BPT) and primary amine groups on benzidine (BZ), a novel conjugated microporous polymer, namely BPT-BZ-CMP, was synthesized by Buchwald-Hartwig coupling reaction and applied in the removal of FCV from aqueous solution firstly. The synthesized BPT-BZ-CMP were characterized by various methods, including FTIR, SEM, BET, and Zeta-potential. Due to the micropore structure and high specific surface area, it took only 30 min for BPT-BZ-CMP to adsorb FCV to reach an equilibrium, and the maximum adsorption capacity was 347.8 mg·g-1. The Liu and pseudo-second-order kinetic models properly fit the adsorption equilibrium and kinetic data, respectively. The adsorption process was a spontaneous process, and the hydrogen bonding, π-π interaction and C-H···π interaction enhanced the adsorption of FCV on BPT-BZ-CMP. BPT-BZ-CMP maintained a good adsorption capacity after four consecutive adsorption-desorption cycle experiments. This study confirmed the potential of BPT-BZ-CMP as efficient sorbent to remove FCV from aqueous solutions.

2.
Chemical Engineering Journal ; : 136751, 2022.
Article in English | ScienceDirect | ID: covidwho-1819445

ABSTRACT

Facile and sensitive analysis methods for pharmaceutical contaminants in aqueous environment are of vital importance for water safety, especially when large amounts of anti-viral drugs are being used, discharged and accumulated. In this work, we used functional metal-organic framework (MOF) as high-performance adsorbent for selective enrichment of such pharmaceutical contaminants in aqueous samples. The MOF was synthesized via a new synthesis method previously developed by our group and immobilized on paper membrane to be used in solid-phase extraction (SPE) device. Different metal ions were anchored by MOF to screen out the adsorbent with the best affinity. The targets were a potential anti-COVID-19 drug favipiravir, and its structural and functional analogues (ingredients or intermediates, other anti-viral drugs). To deeply understand the adsorption mechanisms, quantum calculation and computational fluid dynamics (CFD) simulation were both applied. The experimental and in-silico results together demonstrated that the as-prepared MOF adsorbent possessed high affinity and fast dynamics. The established SPE-based liquid chromatography (LC) method worked well in the range of 10-1000 ng/mL, with only 3 mg of adsorbent per device and 5 mL sample needed, and no mass spectrometer (MS) included, which was very efficient compared to commercial adsorbents. The results met the current detection needs in the application scenario, and inspirable for later design of well-behaved adsorbents.

SELECTION OF CITATIONS
SEARCH DETAIL